Cyclopentadienyl-ruthenium and -osmium chemistry

XXVIII *. Reactions and isomerisation of 1,2 -bis(methoxycarbonyl) ethenyl complexes: X-ray structures of $\mathrm{Ru}\left\{(Z)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}$ -$(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \cdot 0.5 \mathrm{EtOH}$, $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}($ dppe $)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}-$ $\left(\mathbf{P P h}_{3}\right)\left(\eta-\mathbf{C}_{5} \mathbf{H}_{5}\right)$

Michael I. Bruce, Andrew Catlow, Mark G. Humphrey, George A. Koutsantonis, Michael R. Snow and Edward R.T. Tiekink

Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide, South Australia 5001 (Australia)
(Rcceived Junc 16th, 1987)

Abstract

A reinvestigation of the reaction between $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ and $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}(\eta$ $\mathrm{C}_{5} \mathrm{H}_{5}$) and some related complexes is reported. Initial cis addition is followed by conversion into the trans isomer. In the case of the bis- $\left(\mathrm{PPh}_{3}\right)$ complex, isomerisation is followed by chelation of the ester CO group with concomitant displacement of one PPh_{3} ligand. The resulting chelate complex reacts with CO or CNBu^{1} to give the $(Z)-\mathrm{RuC}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ complexes; the (E)-isomer of the carbonyl complex is obtained by addition of $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ to $\mathrm{RuH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are not a reliable guide to assignment of the stereochemistry of the vinyl group. Other products isolated from the initial reaction are the $\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and the $1 / 2 \mathrm{PPh}_{3} / \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ adduct. The molecular structures of $\mathrm{Ru}\left\{(Z)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \cdot 0.5 \mathrm{EtOH}, \mathrm{Ru}\{(E)-$ $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2}-\right.\right.$ $\left.\overline{\mathrm{Me})}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ have been determined. The cis isomer is monoclinic, space group $P 2_{1}$, with $a 9.328(8), b 17.385(10), c 10.356(7) \AA, \beta 101.78(3)^{\circ}$

* For Part XXVII, see ref. 17.
and $Z=2 ; 2107$ data with $I \geq 25 \sigma(I)$ were refined to $R=0.076 . R_{w}=0.085$. The trans isomer is triclinic, space group $P \overline{1}$, with $a 10.404(7), b 11.221(6), ~ c 13.230(9) A$. $\alpha 92.67(5), \beta 110.56(5), \gamma 106.21(5)^{\circ}$ and $Z=2,2520$ data with $I \geqslant 2.50(I)$ were refined to $R=0.055 . R_{\mathrm{w}}=0.068$. The butadienyl complex is monodinic, pace group $P 2_{1} / a$, with $a 19.655(8)$, $b 8.674(4)$, c $21.060(5) A . \beta 116.22(3)^{\circ}$ and $Z=4$: 2724 data with $l \geqslant 2.50(1)$, were refined to $R=0.042 . R_{\mathrm{w}}=0.04$.

Introduction

Reactions between $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and alkynes have given a number of interesting products, including sinyl. butadienyl, and cumulenyl complexes [1]. The reaction with hexafluorobut-2-yne, for example, afforded the adduct (E) -$\left.\mathrm{Ru}\left\{\mathrm{C}_{\left(\mathrm{CF}_{3}\right)}\right)=\mathrm{CH}\left(\mathrm{CF}_{3}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (1) and the butadienyl derivative $\mathrm{Ru}(\mathrm{C}$ -
 ily assigned on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR studies. Two complese were abo obtained from dimethyl acetylenedicarboxylate: the 1 a adduet Rute)-C(CO$\left.\mathrm{Me}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{p} \mathrm{C}_{5} \mathrm{H}_{3}\right)(3)$ and the chelate complex Ru ($\mathrm{CO} \mathrm{CO}_{2} \mathrm{Me}=$ $\mathrm{CHC}(\mathrm{O}) \mathrm{OMe})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{3} \mathrm{H}_{4}\right)$ (4). For 3 the ansigment of geonedre was net do clear-cut as for 1 , but on the hasis of a small value for $/\{\mathrm{HP})$ (oa, 0, 7 Hz found for the vinyl proton, and the rady conversion to 4 . the tram configutation was preferred *. However it was recognised that the isolated complex was not necessarily the initial product, since a facile isomerisation might have oceurred. In this regard it is relevant to recall that the first-formed as addue of $C_{2}(\mathrm{CO}$ Me), with $\operatorname{ReH}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}$ isomerises on heating in benzene (Pl catalyst) [2]. This paper reports a more detailed investigation of the reactions between $\mathrm{C}_{2}(\mathrm{CO}, \mathrm{Mo})$ and selected ruthenium hydrido complexes. including ${ }^{13} \mathrm{C}$ NMR and Xray exstallographic studies which allow confident determinations of configuration. In additon, we have now isolated and characterised the butadienyl complex Ru(COMe) ($(\mathrm{CO} \mathrm{Me})-$ $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Mc}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPH}_{3}\right)\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)(5)$. analogous to complex 2 mentioned above and also to the major product 6 isolated from reactions hetwea RuMe-$\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{3} \mathrm{Me}_{2}[3]\right.$.

Results and Uiscussion

The original preparation of $\mathrm{Ru}\left(\mathrm{C}_{\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\left(\mathrm{PPh}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \text { (3) }}^{(3)}\right.$ was carried out in diethyl ether for 5 h and gave over 90° \% isolated vields [1]: in contrast, reaction in refluxing benzene for 40 min afforded four products: complex 3 (51%). the cyclic vinyl complex 4 (6%, yellow $\mathrm{Ru}\left\langle\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CCO} \mathrm{Me}\right) \mathrm{C}(\mathrm{CO}-$ $\left.\mathrm{Me})=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{8} \mathrm{H}_{5}\right)(5)(20 \%)$, and the $\mathrm{PPh}_{2} \mathrm{C}_{2}\left(\mathrm{CO} \mathrm{O}_{2}\right)_{2}$, adduct (7) (12\%). Complex 5 was dentified by elemental meroanalysis and from its characteristic 'H NMR spectrom. which contans three sharp singlet resonances between $\delta 3.13-3.80 \mathrm{ppm}$ with relative intensities $3 / 6 / 3$ assigned to the ome groups. together with a vinyl proton resonance at $\delta 2.22$ ppm, which is coupled to a single ${ }^{31} \mathrm{P}$ nucleus. The FAB mass spectrum contains a parent molecular ton at $m=$ 714. Full stereochemical characterisation was achieved by a singlecrestal X-ray

[^0]
(1)

(2)

(3) $M=R u$
(8) $M=O s$

(4) $M=R u$
(9) $M=O s$

(5) $R=H$
(6) $R=M e$
structure determination (see below). Compound 7 was identified as the yellow $1 / 2$ adduct of PPh_{3} with $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ by comparison with an authentic sample prepared as described by Johnson and Tebby [4]; presumably it is formed by combination of PPh_{3} displaced in the formation of 4 or 5 with unreacted $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$.

The osmium analogues of complexes $\mathbf{3}$ and $\mathbf{4}$ have also been obtained during this

(5a)

(10) $n=1$
(12) $\mathrm{L}=\mathrm{CO}$
(13) $L=C N B u^{t}$
 71% yield from $\mathrm{OsH}\left(\mathrm{PPh}_{5}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and an excess of $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ in 1.2 -dimethoxyethane (dme) at $120^{\circ} \mathrm{C}$ for 16 h . It was accompanied by a small amount of deep red $\mathrm{Os}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{8}\right)(9)$. the proportion of which could be increased by carrying out the reaction at $150^{\circ} \mathrm{C}$ for 16 h . Conversion of 8 into 9 was achieved by heating in toleme at $150^{\circ} \mathrm{C}$ for 7 h fdentificaton of these complexes was from elemental microanalyses and the general smilarty of their IR. NMR and mass spectra with those of complexes 3 and 4. Howeser. in Contrast with 3. the mass spectrum of 8 showed a parent ion centred on $n^{2}=92$, which fragmented by loss of OMe © O and $\mathrm{PPh}_{\text {s }}$ groups. The two ruthenim complexes give identical mass spectra, presumably as a result of the thermat consersion of 36 4 occurring in the ion source

Similar reactions between $\mathrm{RuH}(\mathrm{L} \mathrm{L})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{3}\right)\left(\mathrm{L} \mathrm{L}=\mathrm{dppm}\left(\mathrm{CH}_{2}\left(\mathrm{PPh}_{2}\right)_{2}\right)\right.$. dppe ($\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$) afforded yellow $\mathrm{Ru} \mathrm{ClCO}_{2} \mathrm{Me}$) $\mathrm{CH}(\mathrm{CO}$ Me) (L-I) (п$\mathrm{C}_{5} \mathrm{H}_{3}$) ($\mathrm{L}-\mathrm{L}=\mathrm{dppm}(\mathbf{1 0}$) dppe (11). the former as a hemberthanol whate. Complex 10 decomposes during some hours in air, although complex 11, like 3. is quite stable in air. Both complexes are very soluble in benzene less soluble in chlorinated solvents, and only sparingly whoble in diethyl ether ethame or actone: they are both insoluble in ligh petroleum. The new complexes were chatatersed on the basis of elemental microanalyses and their IR NMR and mass specta. Infrared absorptions were found for $\mathrm{m}(\mathrm{O})(1705$ and 1725 cm की 10.1605 cm in 11). $\nu(\mathrm{C}=\mathrm{C})\left(1529\right.$ and $1531 \mathrm{~cm}^{-1}$ respectively) and $v(\mathrm{C}-\mathrm{O})\left(1192\right.$ and $1142 \mathrm{~cm}^{1}$ ($\mathbf{1 0}$). $1146 \mathrm{~cm}^{\text {2 }}$ (11)). The salient features of the NMR spectra are discussed below. In their mass spectra, molecular ions centred on $m /=694(10)$ or 708 (11) decompose by loss of the viny and $\mathrm{C}_{5} \mathrm{H}_{5}$ groups.

Conversion of 3 into the chelate complex 4 occurs on heating with concomitant loss of PPh_{3}. An attempt bo improve the vield by addtion of wiphur gave the expected SPPh. but only a one component of a complex. intractable black product. However, addition of iodomethane to a solution of 3 in relluxing toluene rapidly gave a white precipitate of $\mathrm{PM}_{\mathrm{M}} \mathrm{Pb}_{3} \|$, the red shoton gave 4 in sog yold after chromatography.

Reactions between 4 and small ligands, such as (O) ONBu resuh in opening of the chelate ring to give complexes $\mathrm{Ru}(\mathrm{ClO}, \mathrm{Mej}=\mathrm{CH}(\mathrm{CO}, \mathrm{Me})(\mathrm{L})$ -$\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{3} \mathrm{H}_{3}\right)\left(\mathrm{L}=\mathrm{CO}(12)\right.$. CNBu^{1} (13)). Thus, carbonylation of 4 under mid conditions in tetrahydrofuran (thf) solution afforded a sellow product 12a. which proved to be different from the complex 12b obtained by adution of (CO , Me) to $\mathrm{RuH}(\mathrm{CO})\left(\mathrm{PPb}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. Elemental microanalyses showed the the complexes to be isomers: the most marked difference in their IR spectra was in the position of $\nu(\mathrm{CO})$ for the metal-bonded (O group ($1954 \mathrm{~cm}{ }^{\prime}$ n 12a. 1940 cm in 12b). The NMR spectra are discussed helow. Carbonylation of 3 in a methanol dichoromethane mixture gave complex $12 b$ (65%).

The reaction beween 4 and $B u^{\prime}$ NC in refluxing 12 -dimethoxyethane gave pate yellow 13 in high yied. In the $1 R$ spectrum. $p(C N$) bands were found at 2095 and 2065 cm ', and the ester $v(C O)$ was ai 1703 cm ', In the mass spectrom the parent ion ($m / z 654$) fragments by hoss of (NBu . PPh:, OMe and (0 groups

Stereochemistry of the $\mathrm{MClO}, \mathrm{Me}=\mathrm{CH}\left(\mathrm{CO}_{2}\right.$ Me) group
The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ MMR specta of the several complexes described above are
summarised in Tables 1 and 2. These can be interpreted readily in conjunction with the X-ray structural determinations which we have carried out on complexes 11 and 12a.

Molecular structure of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(d p p e)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(11)$
A molecule of 11 is shown in Fig. 1, from which it is clear that the vinyl ligand carries the two $\mathrm{CO}_{2} \mathrm{Me}$ groups in a mutually cis configuration. The ruthenium atom coordination is distorted octahedral (angles $\mathrm{P}(1)-\mathrm{Ru}-\mathrm{P}(2) 85.1(1), \mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(32)$ $\left.93.3(4), \mathrm{P}(2)-\mathrm{Ru}-\mathrm{C}(32) 92.2(5)^{\circ}\right)$. The $\mathrm{Ru}-\mathrm{C}\left(s p^{2}\right)$ distance ($\mathrm{Ru}-\mathrm{C} 2.07(1) \AA$) is within experimental error the same as that found in the trans complex 12a (see below). The ruthenium is also bonded to the two phosphorus atoms of the chelating dppe ligand ($\mathrm{Ru}-\mathrm{P}$ 2.271(4), 2.249(4) \AA) and the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group ($\mathrm{Ru}-\mathrm{C}(\mathrm{cp}$) 2.21-2.28(1), av. $2.25 \AA$). The two longest $\mathrm{Ru}-\mathrm{C}(\mathrm{cp})$ vectors are approximately trans to the shorter of the two $\mathrm{Ru}-\mathrm{P}$ vectors.

Molecular structure of $\mathrm{Ru}\left\{(\mathrm{Z})-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{1 2 a})$
A molecule of 12a is shown in Fig. 2. In this case, the vinyl group has mutually trans $\mathrm{CO}_{2} \mathrm{Me}$ groups, as expected from the mode of preparation. Coordination of the ruthenium atom to the vinyl group ($\mathrm{Ru}-\mathrm{C} 2.080(8) \AA$), a CO ligand ($\mathrm{Ru}-\mathrm{C}$ $1.847(7) \AA$), the PPh_{3} ligand ($\mathrm{Ru}-\mathrm{P} 2.310(2) \AA$) and the $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$ group ($\mathrm{Ru}-\mathrm{C}(\mathrm{cp}$) $2.250-2.264(7)$, av. $2.258 \AA$) is unexceptional; as found in similar complexes, the ruthenium coordination is distorted octahedral ($\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(24)$ 85.0(2), $\left.\mathrm{P}(1)-\mathrm{Ru}-\mathrm{C}(25) 94.7(2), \mathrm{C}(24)-\mathrm{Ru}-\mathrm{C}(25) 93.1(3)^{\circ}\right)$. Compared with 11 above, the C_{5} ring is more symmetrically bonded to the metal atom.

In both complexes, the $\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ groups show no significant
(Continued on p. 66)
Table 1

MLL'	Configuration	Chemical shifts (ppm) ${ }^{a}$				
		$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{CH}=$	$\mathrm{C}_{5} \mathrm{H}_{5}$	PPh	Other
$\overline{\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)_{2}(3)}$	cis	$3.27 \mathrm{~s}, 3.96 \mathrm{~s}$	4.55 s	4.15 s	7.22 m	
$\mathrm{Os}\left(\mathrm{PPh}_{3}\right)_{2}(8)$	cis	$3.25 \mathrm{~s}, 3.95 \mathrm{~s}$	$\begin{aligned} & 4.75 t \\ & (1.0) \end{aligned}$	4.30s	7.20 m	
$\mathrm{Ru}(\mathrm{dppm})(10)$	cis	$3.15 \mathrm{~s}, 3.25 \mathrm{~s}$	$\begin{aligned} & 5.00 \mathrm{~s} \\ & (-) \end{aligned}$	4.80s	7.35 m	$\mathrm{PCH}_{2} 3.80 \mathrm{~m}$
$\mathrm{Ru}(\mathrm{dppe})(11)$	cis	3.19s,3.52s	$\begin{aligned} & 4.29 \mathrm{~s} \\ & (-) \end{aligned}$	4.44s	7.29m	$\begin{aligned} & \mathrm{PCH}_{2} 2.73 \mathrm{~m} \\ & \text { EtOH } 1.18 \mathrm{t} .3 .64 \mathrm{q} \end{aligned}$
$\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(12 \mathrm{a})$	trans	2.88s, 3.66 s	$\begin{aligned} & 6.60 \mathrm{~d} \\ & (2.0) \end{aligned}$	4.98s	7.25 m	
$\mathrm{Ru}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(12 \mathrm{~b})$	cis	3.55s, 3.57 s	$\begin{aligned} & 5.33 \mathrm{~d} \\ & (1.0) \end{aligned}$	4.98s	7.37m	
$\mathrm{Ru}\left(\mathrm{CNBu}^{\mathrm{t}}\right)\left(\mathrm{PPh}_{3}\right)(13)$	cis	3.55s, 3.58 s	$\begin{aligned} & 5.60 \mathrm{~d} \\ & (2.0) \end{aligned}$	4.80s	7.43m	
$\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)(4)$	trans (chelate)	$3.21 \mathrm{~s}, 3.49 \mathrm{~s}$	$\begin{aligned} & 6.20 \mathrm{~d} \\ & (2.5) \end{aligned}$	4.41 s	7.36 m	
$\mathrm{Os}\left(\mathrm{PPh}_{3}\right)(\mathbf{9})$	trans (chelate)	$3.30 \mathrm{~s}, 3.45 \mathrm{~s}$	$\begin{aligned} & 5.90 \mathrm{~d} \\ & (1.0) \end{aligned}$	4.65 s	7.35 m	

[^1]Table 2
${ }^{19} \mathrm{C}$ NMR spectra $\left(\mathrm{CDCl}_{3}\right)$ of some RuLL $\left\{\left(\mathrm{C}_{\left(\mathrm{CO}_{2}\right.} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ complexes

LL'	Configuration	Chemical shifts (ppm)						
		$\mathrm{CO}_{2} \mathrm{Me}$	$\mathrm{C}_{5} \mathrm{H}_{5}$	PPh	CH	RuC a	$\mathrm{CO}_{2} \mathrm{Me}$	Other ${ }^{\text {a }}$
$\left(\mathrm{PPh}_{3}\right)_{2}(\mathbf{3})$	cis	$\begin{aligned} & 49.51 \mathrm{~s}, \\ & 50.31 \mathrm{~s} \end{aligned}$	86.25 s	126-140m	163.0 s	$\begin{aligned} & 182.2 \mathrm{t} \\ & (16) \end{aligned}$	182.5s	
$\mathrm{dppm}(\mathbf{1 0})^{\text {b }}$	cis	50.05 s	85.65	128-134m	162.45s	$\begin{aligned} & 191.9 \mathrm{t} \\ & (0.5) \end{aligned}$	181.45s	$\mathrm{PCH}_{2} 29.05 \mathrm{~m}$
$(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\mathbf{1 2 a})$	trans	$\begin{aligned} & 49.9 \mathrm{~s}, \\ & 50.25 \mathrm{~s} \end{aligned}$	87.45s	127.7-136.6m	168.65 s	$\begin{aligned} & 172.7 \mathrm{~d} \\ & (11) \end{aligned}$	$\begin{aligned} & 178.25 \mathrm{~s} . \\ & 178.4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { RuCO 205.0d } \\ & (21) \end{aligned}$
(CO)(PPh_{3}) (12b)	cas	50.5s	87.955	128-136m	162.3s	$\begin{aligned} & 176.6 \mathrm{~d} \\ & (: 3) \end{aligned}$	179.65 s	RuCO 204.7 d (21)
$\left(\mathrm{CNBu}^{\text { }}\right.$) $\left(\mathrm{PPh}_{7}\right)(\mathbf{1 3})$	cis	$\begin{aligned} & 50.0 \mathrm{~s}, \\ & 50.3 \mathrm{~s} \end{aligned}$	84.955	127.5-134.0m	162.45s	$\begin{aligned} & 137.05 \mathrm{~d} \\ & (44) \end{aligned}$	$\begin{aligned} & 180.4 \mathrm{~s}, \\ & 186.7 \mathrm{~s} \end{aligned}$	CMe 31.0 s CMe 36.35 CN 124.1 s
$\mathrm{PPh}_{3}(4)$	trans (chelate)	$\begin{aligned} & 50.55 \mathrm{~s} . \\ & 50.6 \mathrm{~s} \end{aligned}$	77.25 s	127-136m	116.25s	$\begin{aligned} & 179.1 \mathrm{~d} \\ & (17) \end{aligned}$	176.4s	

Fig. 1. A molecule of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (11), showing atom numbering scheme.

(14)

(15)

(17)

 numbering scheme.
differences from those found in related molecules such as $\mathrm{Pd}\left\{(L)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\right.$ $\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{C}_{2} \mathrm{Ph}\right)\left(\mathrm{PEt}_{3}\right)_{2}$ (14) [5]. $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}-$ $\left.\left(\mathrm{PPh}_{3}\right)(15)[6] . \mathrm{RuCl}\{(Z)-\mathrm{ClCO}, \mathrm{Me})=\mathrm{CCl}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})_{2}\left(\mathrm{PPh}_{3}\right)_{2}(16)[7]$, trans-

Table 3
Stereochemistry of some $\mathrm{M}(\mathrm{ClO}, \mathrm{Me}) \mathrm{CX}(\mathrm{CO}, \mathrm{Me})$ groups.

(A) cis (B) trans

Complex	11	14^{a}	15	16	12a	17	18
M	Ru	Pd	Pl	Ru	Ru	P_{1}	Pl
X	H	H	H	C	H	I)	(i)
Configuration	A	A	A	A	B	H	B

Bond fengths (A)

$\mathrm{M}-\mathrm{C}(1)$	$207(1)$	$205(2)$	$2.026(8)$	$2.16(2)$	$2.080(8)$	$2.086(12)$	$1.97(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.43(2)$	$1.38(2)$	$1.337(12)$	$1.41(3)$	$1.373(10)$	$1.37(2)$	$1.31(2)$
$\mathrm{C}(1)-\mathrm{C}(3)$	$1.47(2)$	$1.48(2)$	$1.508(13)$	$1.49(3)$	$1.494(9)$	$1.50(2)$	$1.56(3)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.53(2)$	$14893)$	$1.480(13)$	$1.49(3)$	$1.402(10)$	$1.49(2)$	$1.51(3)$

Bond angles (deg)							
$\mathrm{M}-\mathrm{C}(1)-\mathrm{C}(2)$	126.1(10)	94.565	$126.7(7)$	$129.9(14)$	$13322(5)$	129.965	$129.9(11)$
$\mathrm{M}-\mathrm{C}(1)-\mathrm{C}(3)$	$113.7(10)$	$91.7(4)$	$122.8(6)$	114.7(15)	$114.7(6)$	117.951	112.6(9)
C(3)-C(1)-C(2)	120.1(11)	123(2)	$120.5(8)$	114.5(18)	111.5(7)	111888	1174 (9)
C(1)-C(2)-C(4)	124.3(13)	121 (2)	$126.4(9)$	122.1(14)	124.677	12488	12448)
C(1)-C(2)-X	-	-	...	122.4 (16)			123.8(10)
C(4)-C(2) X			-	1154197			109888
Reference	This work	[5]	[6]	[7]	This work	181	91

[^2]$\operatorname{PtH}\left\{(Z)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PBu}^{\mathrm{n}} \mathrm{Bu}_{2}\right)_{2}$ (17) [8] or $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right][\mathrm{Pt}\{(E)-\mathrm{C}$ $\left.\left.\left(\mathrm{CO}_{2} \mathrm{Et}\right)=\mathrm{CCl}\left(\mathrm{CO}_{2} \mathrm{Pr}^{\mathrm{i}}\right)\right\} \mathrm{Cl}_{2}(\mathrm{CO})\right]$ (18) [9] (Table 3).

The structure determinations unequivocally establish the configurations of the vinyl ligands in complexes 11, 12a and 12b. Furthermore, since both carbonylation of 3 and the reaction between $\mathrm{RuH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ afforded 12b, it is likely that cis addition of the metal hydride to the alkyne occurs, as has been found previously. The ${ }^{1} \mathrm{H}$ NMR spectra are entirely consistent with these structures. In the cis isomer, the vinyl CH resonance would be expected at higher field than in the trans isomer because of the shielding effect of metal electron density: the observed values are 5.33 and 6.60 , respectively. The magnitude of the J (HP) coupling is also helpful, having values of 2 and 1 Hz in 12a and 12b, respectively; the trans coupling in other compounds containing the $\mathrm{PC}=\mathrm{CH}$ moiety is usually twice the cis coupling [10].

We find that chemical shifts of the OMe resonances differ by only ca. 0.02 ppm in the cis isomer, compared with ca. 0.8 ppm in the trans isomer; this is consistent with the CO_{2} Me groups being in more similar environments in the former. There is also observed a separation of the OMe resonances of ca. 0.3 ppm in the chelate complex 4.

The ${ }^{13} \mathrm{C}$ NMR spectra of the isomeric complexes also show differences in the $\mathrm{CO}_{2} \mathrm{Me}$ resonances which can be related to the observed geometrical isomerism. In the cis isomer 12b, both groups are accidentally equivalent, with the OMe and CO resonances at 50.5 and 179.6 ppm , respectively, whereas in the trans isomer 12a, two sets of resonances are found, at 49.9 and 50.2 , and 178.25 and 178.4 ppm , respectively. Other resonances are readily assigned to $\mathrm{C}_{5} \mathrm{H}_{5}$ (88.0 and 87.5 ppm , respectively), CH (162.3 and 168.7), $\mathrm{Ru}-\mathrm{C}(176.6$ and 172.7) and $\mathrm{Ru}-\mathrm{CO}$ carbons (204.7 and 205.0). The metal-bonded carbons show $11-13$ ($\mathrm{Ru}-\mathrm{C}$) or 21 Hz ($\mathrm{Ru}-\mathrm{CO}$) coupling to phosphorus.

It is evident that the effects of differing geometry of the vinyl ligand on the NMR spectra are subtle, and of limited use in assigning the stereochemistry unless both isomers are available for study. However, on the basis of the above results we have been able to assign the structures of the various complexes encountered in this work with some confidence.

The isomerisation reaction

We have previously suggested that the initial cis adduct might transform into the trans isomer by virtue of a partial withdrawal of electron density from the $\mathrm{C}=\mathrm{C}$ double bond on to the β-ester carbonyl group (Scheme 1, route A) [1]. The reduction in $\mathrm{C}=\mathrm{C}$ bond order would allow rotation of the $\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ group about this bond, a possible driving force being the extra stability derived from chelation of the ester carbonyl group.

The isomerisation proceeds slowly on heating, but the reaction is accelerated by addition of iodomethane to the solution of complex 3. In this way, the displaced PPh_{3} ligand is removed as $\left[\mathrm{PMcPh}_{3}\right]$, which separates from the solution. The primary role of the iodomethane, however, is to alkylate the β-carbon, generating a carbene intermediate (Scheme 1, route B). Carbenes containing electron-withdrawing substituents are relatively unstable, and we would expect that rotation and displacement of the PPh_{3} would be accompanied by rapid transfer of the methyl group from the β-carbon to the PPh_{3} ligand.

route A

$\frac{-\left[\text { PMePr }_{2}\right]}{\text { route } B}$

Scheme 1. One PPh_{5} and $\mathrm{C}_{5} \mathrm{H}_{5}$ ligands omitted for darity

Formation and molecular structure of the butadienyl complex 5
 and subsequently in the addition of $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}_{2}\right.$ to $\mathrm{RuMe}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [3]. was the formal insertion of two alkyne molecules into the Ru H or Ru . C bonds of the precursor complexes, generating the butadienyl complexes 2 or 6 . Complex 5 was not observed in initial studies of the reaction between the hydride and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$, although, as we have now shown it can be isolated as a stable yellow crystalline solid if the reaction conditions are modified. We have shown previously [1] that vinyl complex 3 reacts with $\mathrm{C}_{2}\left(\mathrm{CF}_{3}\right)_{2}$ to give the mixed insertion product 19. where the entering alkyne has apparently inserted into the vinylic $\mathrm{C} \ldots \mathrm{H}$ hond of 3 a result which has been rationalised on the basis of a dipolar intermediate similar to route A in Scheme 1.

The spectroscopic evidence did not distinguish between the butadienyl formulation and an ester-CO chelate structure such as 5 a, so a single crystal X-ray study was carried out. As mentioned above, this confirmed the $1.3 .4 \mathrm{~m}^{7}$-butadienyl structure, a diagram of which is given in Fig. 3. The ruthenium atom is coerdinated by the $\mathrm{C}_{5} \mathrm{H}_{5}$ group ($\mathrm{Ru}-\mathrm{C}(\mathrm{cp}) 2.207(6)-2.247(7) \mathrm{A}$, av. 2.228 A), the PPh, ligand ($\mathrm{Ru}-\mathrm{P} 2.346(2) \mathrm{A}$). and the butadienyl group, which is attached by the o-bonded carbon ($\mathrm{Ru}-\mathrm{C}(6) 2.060(6)$ A) and the outer $\mathrm{C}=\mathrm{C}$ double bond of the butadiene ($\mathrm{Ru}-\mathrm{C}(8) 2.189(6), \mathrm{Ru}-\mathrm{C}(9) 2.194(6) \mathrm{A})$. These distances may be compared with

 no significant differences are found.

Other reactions of $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}^{2}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$
The Ru-C bond in complex 3 was easily cleaved by reagents such as HCl or H_{2}. Thus, when a suspension of 3 in aqueous methanolic hydrochloric acid was heated. an orange precipitate of $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta \mathrm{C}_{5} \mathrm{H}_{5}\right)$ formed,

(18)

(19)

(20)

Hydrogenation of $\mathbf{3}$ in tetrahydrofuran solution under mild conditions afforded a moderate yield of a white complex identified as $\mathrm{RuH}_{3}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (20) by comparison of its IR and ${ }^{1} \mathrm{H}$ NMR spectra with those previously reported [13].

 atom numbering scheme.

Table 4
Some structural parameters for y^{3}-butadienviruthenium complexes

Comples	5	2	19
R^{1}	$\mathrm{CO}_{2} \mathrm{Me}$	Cr_{7}	(0, Me
R^{1}	Come	Cr_{3}	C F
Bond distances (A)			
Ru-C(1)	206066	2.05	20821
Ru -C(3)	21896	2.16	21855
Ru -C(4)	21946	2.19	21716)
C(1)-C(2)	13659)	1.33	1.3487,
C(2)-(\%)	1.5158)	1.51	1.5048)
(3) $C(4)$	148119	1.42	(4280 ${ }^{\text {a }}$
Bond angles (deg)			
$\mathrm{Ru}-\mathrm{C}(1)-\mathrm{C}(2)$	$1004(4)$	${ }^{\text {a }}$	99.4 (4)
C(1) $\mathrm{C}(2)-\mathrm{C}(3)$	10475	"	10554
C(2)-C(3)-C(4)	(17.7(6)	"	117.24
Reference	Thes work	(11]	[1]

"Not available.

Interestingly, this trihydride was not obtained by similar hydrogenation of the chelate complex 4, suggesting that replacement of PPh_{3} by 2 H ocers before cleavage of the $\mathrm{Ru}-\mathrm{C}$ bond. We have previously noted that ligand exchange in $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ is slow [14]. The trihydride was obtained previously from the reaction between $\mathrm{RuCl}\left(\mathrm{PPH}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and LiAlH_{4} in tetrahydrofuran 1131.

Conclusions

The resnlts described allow the following conclusions to be drawn:
(i) Initial cis addition occurs in the reaction between $\mathrm{RuH}(\mathrm{L})_{2}\left(\eta-\mathrm{C}_{3} \mathrm{H}_{3}\right)\left(\mathrm{L}=\mathrm{PPh}_{3}\right.$. $\mathrm{L}_{2}=(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)$, dppm, dppe) and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}_{2}\right.$.
(ii) On heating of $\mathbf{3}$, isomerisation to the mans complex occurs, followed by chelation of the ester carbonyl group with displacement of a PPh_{3} ligand.
(iii) Subsequent addition of ligands to the chelate complex 4 affords the mams vinyl complex.
(iv) The bis-insertion product. butadienyl complex 5 , is also formed in the reaction between $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ and $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$. presumably by attack of a dipolar intermediate, such as in route A (Scheme 1), on a second molecule of the alkyne.

Experimental

General conditions. All reactions were carried out under nitrogen except those involving CO or H_{2}; no special precautions were taken to exclude air during work-up, since most complexes proved to be stable in air as solids, and for short times in solution. Pressure reactions were carried out in a small stainless steel laboratory autoclave (Carl Röth, Karlsruhe) of internal volume 100 ml , equipped with an internal glass liner.

Instruments. Perkin-Elmer 683 double-beam spectrometer, NaCl optics (IR); Bruker WP80 spectrometer (${ }^{1} \mathrm{H}$ NMR at $80 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR at 20.1 MHz); GEC-Kratos MS3074 mass spectrometer (mass spectra at 70 eV ionising energy, 4 kV accelerating potential).

FAB mass spectra were obtained on a VG ZAB 2 HF instrument equipped with a FAB source. Argon was used as the exciting gas, with source pressures typically $10^{-6} \mathrm{mbar}$; the FAB gun voltage was 7.5 kV , current 1 mA . The ion accelerating potential was 8 kV . The matrix was 3 -nitrobenzyl alcohol. The complexes were made up as ca. 0.5 M solutions in acetone or dichloromethane; a drop was added to a drop of matrix and the mixture was applied to the FAB probe tip.

Starting materials. The literature method was used to prepare $\mathrm{RuH}(\mathrm{L})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ $\left(\mathrm{L}=\mathrm{PPh}_{3}, \mathrm{~L}_{2}=(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\right.$, dppm, dppe) and $\mathrm{OsH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ [14]. Solvents were extensively dried and distilled (dme and thf from sodium/benzophenone) before use.

Chromatography. For column chromatography, the packing was Florisil or silica. Preparative TLC was on $20 \times 20 \mathrm{~cm}$ plates coated with Kieselgel $60 \mathrm{GF}_{254}$ (Merck, Darmstadt).

Reaction between $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$

A solution of $\mathrm{RuH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(502 \mathrm{mg}, 0.73 \mathrm{mmol})$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}$ $\left(0.25 \mathrm{ml}, 2.03 \mathrm{mmol}\right.$) in benzene (50 ml) was heated (oil bath at $82-86^{\circ} \mathrm{C}$) for 45 min . Evaporation of the cooled solution gave a red oil, which was chromatographed (Florisil). After washing out of the excess of alkyne with light petroleum, elution with $1 / 10$ acetone/light petroleum gave an orange band containing $\mathrm{Ru}\left\{\mathrm{C}_{\left(\mathrm{CO}_{2}-\right.}\right.$ $\mathrm{Me})=\mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(4)(26 \mathrm{mg}, 6 \%)$ (from diethyl ether/light petroleum; identified by melting point and IR spectrum). Further elution with $1 / 4$ acetone/light petroleum gave a yellow fraction containing $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}-\right.$ $\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(3)$ ($308 \mathrm{mg}, 51 \%$) (from diethyl ether/light petroleum; identified by melting point and IR spectrum). A second yellow band was eluted with $1 / 3$ acetone/light petroleum, and crystallisation from diethyl ether/pentane gave $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(5)(106$ $\mathrm{mg}, 20 \%$), m.p. $180-181^{\circ} \mathrm{C}$ (Found: C, $58.81 ; \mathrm{H}, 4.64 ; M$ (mass spectrometry) 714 ; $\mathrm{C}_{35} \mathrm{H}_{33} \mathrm{O}_{8} \mathrm{PRu}$ calcd.: $\mathrm{C}, 58.90 ; \mathrm{H}, 4.66 \%, M$ 714). IR (Nujol): $\nu(\mathrm{CO})$ 1716vs, $1699 \mathrm{~s} ; \nu(\mathrm{C}=\mathrm{C}) 1585 \mathrm{w}$; other bands at $1310 \mathrm{~m}, 1250(\mathrm{sh}), 1212 \mathrm{~s}, 1192 \mathrm{~m}, 1150 \mathrm{~m}$, $1140 \mathrm{~m}, 1093 \mathrm{~m}, 1012 \mathrm{w}, 895 \mathrm{w}, 785 \mathrm{w}, 758 \mathrm{w}, 745 \mathrm{w}, 697 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right)$ $2.22(\mathrm{~d}, J(\mathrm{HP}) 16 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 3.13(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.60(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OMe}), 3.80(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OMe}) ; 4.89\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{5}\right) ; 7.2-7.4(\mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph})$. FAB mass spectrum: 714, $[M]^{+}, 29 ; 682, \quad[M-\mathrm{MeOH}]^{+}, ~ 12 ; ~ 655, ~\left[M-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}, ~ 15 ; ~ 429$, $\left[\mathrm{Ru}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}, 100 ; 262,\left[\mathrm{PPh}_{3}\right]^{+}, 31 ; 167,\left[\mathrm{Ru}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\right]^{+}$, 18. Continued elution with the same solvent afforded a yellow fraction, further purified by TLC (silica
gel; 1/1 acetone/light petroleum) to give $7(60 \mathrm{mg}, 125)\left(R_{f} 0.36\right.$; from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /light petroleum), m.p. $248-249^{\circ} \mathrm{C}$ (lit. [4] $248-250^{\circ} \mathrm{C}$) (Found: M (mass spectrometry) 546; $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ calcd. $M 546$).

Preparation of 1,2-bisicarbomethoxy)etheny complexes

(i) $\left.\mathrm{Ru}_{\{ } \mathrm{C}(\mathrm{CO}, \mathrm{Me})=\mathrm{CHClO}, \mathrm{OMe}\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-C_{3} H_{3}\right)$ (4). Refluxing a mixture of $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(400 \mathrm{mg} .0 .48 \mathrm{mmol})$ and Mel (2280 $\mathrm{mg} .16 .1 \mathrm{mmol})$ in toluene (25 m) for 45 min resulted in the precipitation of a white powder. identified (m.p. and NMR) as $\left[\mathrm{PMePh}_{3}\right] \mathrm{I}(198 \mathrm{mg} .88 \%$) and a red solution. This was evaporated and the resulting red oil chromatographed on a column of silica. Elution with ether produced a red-orange band which was collected and evaporated to diryness. Extraction of the residue with ether addition of light petroleum, concentration and refrigeration at $-30^{\circ} \mathrm{C}$ reated in the formation of orange microcrystals. Concentration of the mother liquor and refrigeration gave a further crop of $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHC}(\mathrm{O}) \mathrm{OMe}_{(1)}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{n}-\mathrm{C}_{3}\right)\right.$ (4) (total yicld 219 mg . 80%) m.p. $125-126^{\circ} \mathrm{C}$ (Lit. [1] 126-127 C). Infrared (Nujol): $\nu\left(\mathrm{CO}\right.$ free) $1710 \mathrm{~s}, \nu\left(\mathrm{CO}\right.$ coord) $1570 \mathrm{~s}, \nu(\mathrm{CO}) 1579 \mathrm{~cm}^{\text {(}}$ (Lit.|1 $p(\mathrm{CO}$ free) 1699 m , $v(\mathrm{CO}$ coord $\left.) 1586 \mathrm{~cm}^{-1}\right)$.
(ii) $\left.\mathrm{Os}_{\{ }(\mathrm{E})-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{8} H_{5}\right.$ (8). A mixture of $\mathrm{OsH}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(500 \mathrm{mg}, 0.64 \mathrm{mmol})$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(200 \mathrm{mg} .1 .41 \mathrm{mmol})$ in dme (50 ml) was heated under nitrogen in a small autodave $\left(120^{\circ} \mathrm{C}\right.$. 16 h : working pressure 35 atm). After cooling, evaporation gave a red oil which was chromatographed on Florisil. A red fraction, eluted with benzene, was recrystallised (Et, O) to give deep red crystals of $\left.\left.\mathrm{Os}\left(\mathrm{C}_{(} \mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{CHC(O}\right) \mathrm{OMe}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{3} \mathrm{H}_{3}\right)$ (6) $(40 \mathrm{mg} .76)$. Elution with benzene/dicthyl ether 20 , 1 gave brigh yellow
 mg, 71%), m.p. $205^{\circ} \mathrm{C}$. Found: C. 60.63 ; H. 4.63: M (mass spectrometry) 922 : $\mathrm{C}_{17} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{O}_{5} \mathrm{P}_{2}$ calcd: C. 61.16: H. 4.24\%: $M 922$. IR (Nugolt: $p(\mathrm{C}=0) 1703 \mathrm{~s}$, $1685(\mathrm{sh}) ; \nu(\mathrm{C}=\mathrm{C}) 1516 \mathrm{~m} ; v(\mathrm{C}$ O) 1196s, 1138s: other bands at 1312m. 1178(sh). $1090 \mathrm{~m} .1009 \mathrm{~m}, 869 \mathrm{~m}, 836 \mathrm{w}, 813 \mathrm{w}, 754(\mathrm{sh}), 746 \mathrm{w} .705 \mathrm{w}, 697 \mathrm{~m} \mathrm{~cm}$
 $\mathrm{OsH}^{\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(1410 \mathrm{mg} .1 .81 \mathrm{mmol}) \text { and } \mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(520 \mathrm{mg} .3 .64 \mathrm{mmol}) ~}$ in dme (50 ml) was heated under nitrogen in a small autoclave ($150^{\circ} \mathrm{C} .16 \mathrm{~h}$). Separation of the products by preparative TLC ($\mathrm{Et}_{2} \mathrm{O}$) afforded $\mathrm{PPl},(R, 0.91)$.
 $54 \%)$ and yellow $\mathrm{Os}_{4}\left(\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)(8)(R, 0.32)(210$ mg. 12\%). Complex 9 was recrystallised $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ to give deep red orvats. mp. 171-173 ${ }^{\circ} \mathrm{C}$ Found: $\mathrm{C}, 52.86 ; \mathrm{H} .424 ; \mathrm{M}$ (mass spectrometry) 660: $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{4} \mathrm{OsP}$ calcd.: C. 52.73: H, 4.09\%; $M 660$. IR (Nujol): $y(\mathrm{C}=\mathrm{O})$ 1710s, 1694s, 1574w: $\nu(\mathrm{C}=\mathrm{C}) 1675 \mathrm{~s} ; \nu(\mathrm{C}-\mathrm{O}) 1292 \mathrm{~s}, 1242 \mathrm{~s}$; other bands at 1198 m . 1177 m .1156 w .1111 m . $1078 \mathrm{~m}, 1019 \mathrm{w} .793 \mathrm{w} .759 \mathrm{w}, 721 \mathrm{w}, 718 \mathrm{w}, 671 \mathrm{~m}, 667 \mathrm{~m} \mathrm{~cm}$. The baseline was extracted with dme to give white needles of $\mathrm{C}_{6}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{6}$ (from $\left.\mathrm{Et}_{2} \mathrm{O}\right)(340 \mathrm{mg}$, 65%, m.p. $186-187^{\circ} \mathrm{C}$, identified by comparison with an authentic sample (IR. MS).

The chelate complex 9 was also obtained by heating at solution of $\mathrm{Os}\left(\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{3} \mathrm{H}_{5}\right)(8)(500 \mathrm{mg} .0 .54 \mathrm{mmol})\right.$ in toluene (50 ml) $\left(150^{\circ} \mathrm{C}, 7 \mathrm{~h}\right.$; autoclave). After cooling, evaporation and chromatography (Florisil) afforded complex 9 (from benzene) ($320 \mathrm{mg} .89 \%$), eluted with toluene diethyl ether ($1 / 1$).
(iv) $\mathrm{Ru}\left\{(\mathrm{E})-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(d p p m)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (10). A mixture of $\mathrm{RuH}(\mathrm{dppm})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(240 \mathrm{mg}, 0.35 \mathrm{mmol})$ and excess $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(120 \mathrm{mg}, 0.84$ mmol) was heated in refluxing diethyl ether (60 ml) for 48 h . Cooling afforded yellow crystals of $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{dppm})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (10) (113 mg, 32%), m.p. $86-90^{\circ} \mathrm{C}$ (dec.) (Found: C, 59.79 ; H, 4.86; M (mass spectrometry) 694; $\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$ calcd.: $\mathrm{C}, 62.25 ; \mathrm{H}, 4.90 \%, M 694$). IR (Nujol): $\nu(\mathrm{C}=\mathrm{O}) 1725 \mathrm{~m}$, $1705 \mathrm{~s} ; \nu(\mathrm{C}=\mathrm{C}) 1529 \mathrm{~m} ; \nu(\mathrm{C}-\mathrm{O}) 1146 \mathrm{~s}$; other bands at $1318 \mathrm{w}, 1244 \mathrm{w}, 1201 \mathrm{~m}$, 1120 (sh), $1100 \mathrm{~m}, 1071$ (sh), $1027 \mathrm{w}, 999 \mathrm{w}, 832 \mathrm{w}, 786 \mathrm{w}, 737 \mathrm{w}, 723 \mathrm{~s}, 699 \mathrm{~s} \mathrm{~cm}^{-1}$.
(v) $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(d p p e)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (11). This complex was prepared from $\mathrm{RuH}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(300 \mathrm{mg}, 0.53 \mathrm{mmol})$ and $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(150$ $\mathrm{mg}, 1.06 \mathrm{mmol}$) in refluxing diethyl ether (60 ml) for 15 h . The yellow crystals which separated on cooling were recrystallised $\left(\mathrm{CHCl}_{3} / \mathrm{EtOH}\right)$ to give the hemi-ethanol solvate ($223 \mathrm{mg}, 69 \%$), m.p. $170-174^{\circ} \mathrm{C}$ (dec.) (Found: C, 61.73 ; H, 5.36, M (mass spectrometry) 708; $\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ calcd.: $\mathrm{C}, 62.38 ; \mathrm{H}, 5.34 \%, M 708$). IR (Nujol): $\boldsymbol{\nu}(\mathrm{C}=\mathrm{O}) 1695 \mathrm{~s}(\mathrm{br}), \nu(\mathrm{C}=\mathrm{C}) 1531 \mathrm{~s}, \boldsymbol{\nu}(\mathrm{C}-\mathrm{O}) 1192 \mathrm{~s}, 1142 \mathrm{~s}$; other bands at $3060 \mathrm{~m}, 1585 \mathrm{w}, 1573 \mathrm{w}, 1482 \mathrm{~m}, 1432 \mathrm{~s}, 1321 \mathrm{~s}, 1160(\mathrm{sh}), 1107(\mathrm{sh}), 1095 \mathrm{~m}, 1072 \mathrm{w}$, $1029 \mathrm{~m}, 1000 \mathrm{~m}, 958 \mathrm{w}, 935 \mathrm{w}, 915 \mathrm{w}, 868 \mathrm{w}, 857 \mathrm{~m}, 831 \mathrm{~m}, 802 \mathrm{~m}, 782 \mathrm{~m}, 744 \mathrm{~s}, 709$ (sh), $697 \mathrm{~s}, 665 \mathrm{~s}, 658(\mathrm{sh}), 641 \mathrm{~m}, 628 \mathrm{~m}, 617 \mathrm{~m} \mathrm{~cm}^{-1}$.
(vi) $\mathrm{Ru}\left\{(\mathrm{Z})-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (12a). A red solution of $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHC}(\mathrm{O}) \mathrm{OMe}\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(4)(254 \mathrm{mg}, 0.44 \mathrm{mmol})$ in thf (20 ml) was carbonylated in a small autoclave ($12.5 \mathrm{~atm}, 100^{\circ} \mathrm{C}, 2 \mathrm{~h}$). The resulting yellow solution was evaporated to dryness and separation on preparative TLC plates (silica, $1 / 1$ light petroleum/ether) revealed a mixture of six bands. The major yellow band ($R_{f} 0.52$) was isolated and crystallisation from ether/light petroleum afforded light yellow crystals of $\mathrm{Ru}\left\{(Z)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}$ -$(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{1 2 a})(173 \mathrm{mg}, 66 \%)$, m.p. $128-130^{\circ} \mathrm{C}$. (Found: C, 60.17 ; H, 4.65; $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{O}_{5} \mathrm{PRu}$ calcd.: C, 60.00; H, 4.50\%). IR (Nujol): $\nu(\mathrm{RuCO}) 1954 \mathrm{vs}(\mathrm{br})$, $\nu(\mathrm{CO}) 1718 \mathrm{~s}, 1700 \mathrm{~s}, \nu(\mathrm{CC}) 1556 \mathrm{~s} \mathrm{~cm}^{-1}$; other bands at $1540 \mathrm{w}, 1482 \mathrm{w}, 1440 \mathrm{w}$, 1396 (sh), $1355 \mathrm{w}, 1322 \mathrm{~m}, 1208 \mathrm{~s}, 1188 \mathrm{~s}, 1162 \mathrm{vs}, 1096 \mathrm{~s}, 1092 \mathrm{~s}, 1020 \mathrm{~m}, 1014 \mathrm{~s}, 1000 \mathrm{~m}$, 995(sh), $862 \mathrm{w}, 845 \mathrm{~m}, 835 \mathrm{w}, 825 \mathrm{w}, 814 \mathrm{~m}, 798 \mathrm{w}, 762 \mathrm{~m}, 752 \mathrm{~m}, 724 \mathrm{w}, 703 \mathrm{~m}, 694 \mathrm{~m}$, $668 \mathrm{w} \mathrm{cm}^{-1}$.
(vii) $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (12b). (a) A solution of $\mathrm{Ru}\left\{\mathrm{C}_{\left.\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(3)(300 \mathrm{mg}, 0.36 \mathrm{mmol}) \text { in } \mathrm{C}}\right.$ a mixture of MeOH and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 / 5,60 \mathrm{ml})$ was carbonylated in an autoclave (40 $\mathrm{atm}, 110^{\circ} \mathrm{C}, 21 \mathrm{~h}$) giving a pale yellow solution which was evaporated to dryness. Separation by preparative TLC (silica, $1 / 1$ light petroleum/acetone) revealed a complex mixture of seven bands of which only the major yellow band ($R_{f} 0.6$) was isolated. Crystallisation (ether/light petroleum) gave yellow microcrystals of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathbf{1 2 b})(140 \mathrm{mg}, 65 \%)$, m.p. $165-168^{\circ} \mathrm{C}$. IR (Nujol): $\nu(\mathrm{RuCO}) 1940 \mathrm{vs}(\mathrm{br}), \nu(\mathrm{CO}) 1708 \mathrm{~s}, 1690 \mathrm{~s} ; \nu(\mathrm{CC}) 1557 \mathrm{~s}$ cm^{-1}; other bands at 1482 (sh), 1441 (sh), 1438s, 1325s, 1212s, 1191m, 1167(sh), $1154 \mathrm{vs}, 1100(\mathrm{sh}), 1095 \mathrm{~m}, 1074 \mathrm{w}, 1023 \mathrm{~m}, 1009 \mathrm{~m}, 1000(\mathrm{sh}), 960 \mathrm{w}, 870 \mathrm{w}, 855(\mathrm{sh})$, $849 \mathrm{~m}, 841 \mathrm{~m}, 832 \mathrm{w}, 810 \mathrm{w}, 750 \mathrm{~m}, 725 \mathrm{w}, 710(\mathrm{sh}), 700 \mathrm{w}, 661 \mathrm{w} \mathrm{cm}^{-1}$.
(b) Dropwise addition of $\mathrm{C}_{2}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}(330 \mathrm{mg}, 2.3 \mathrm{mmol})$ to a stirred solution of $\mathrm{RuH}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(450 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dme $(30 \mathrm{ml})$ caused an instant colour change from bright yellow to red. After heating a reflux point for 3 h , evaporation, purification of the resultant oil by preparative TLC (diethyl ether/light petroleum 9/1) and crystallisation of the yellow product (diethyl ether/n-hexane)
afforded bright yellow crystals of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right](\mathrm{CO})\left(\mathrm{PPh}_{3}\right)(\eta-$ $\mathrm{C}_{5} \mathrm{H}_{5}$) ($110 \mathrm{mg}, 30 \%$). This complex was identified by comparison with a sample made previously [1].
(viii) $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right)(\mathrm{CNBu})(P \mathrm{Ph})\left(\eta-\mathrm{C}_{;} \mathrm{H}_{5}\right)(13)$ A mixture of $\left.\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CHC(O}\right) \mathrm{OMe}\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (4) (200 $\mathrm{mg}, 0.31 \mathrm{mmol}$ and Bu'NC ($120 \mathrm{mg}, 0.72 \mathrm{mmol}$) was heated in refluxing dme $\{20 \mathrm{ml})$ for 2 h , during which time the colour of the solution changed from red to yellow. Evaporation. purification by preparative TLC (diethyl ether /light petroleum 9/1) and orystallisation of the yellow band ($R, 0.77$) afforded yellow orystals of Ru\{(E) $\left.\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{CNBu}^{\prime}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta \mathrm{C}_{6} \mathrm{H}_{5}\right)(10)$ (160 me. 71s). m.p. 165-166 ${ }^{\circ} \mathrm{C}$. Found: C, 61.57: H, 5.64: N, 2.19. $\mathrm{C}_{3} \mathrm{H}_{46} \mathrm{NO}_{4} \mathrm{PRa}$ calcd: C. 62.97 . H, 5.40; N. 2.10\%. IR (Nugol): $\quad v(\mathrm{CN}) 2095 \mathrm{~s}, 2065(\mathrm{sh}): v(\mathrm{C}=\mathrm{O}) 1703 \mathrm{~s}, v(\mathrm{C}=\mathrm{C})$ $1560 \mathrm{~s}, \nu(\mathrm{C}-\mathrm{O}) 1200 \mathrm{~s}, 1142 \mathrm{~s}$; other bands at $1312 \mathrm{~m} .1158 \mathrm{w}, 1095(\mathrm{ch}) .1090 \mathrm{~m} .1008 \mathrm{w}$. $839 \mathrm{w}, 801 \mathrm{~m} .756 \mathrm{~m} .719 \mathrm{w} .697 \mathrm{~m} .656 \mathrm{w} \mathrm{cm}$

Other reactions of $\mathrm{Ru}(\mathrm{lE}) \mathrm{Cl}(\mathrm{CO}, \mathrm{Me})=\mathrm{CH}(\mathrm{CO}, \mathrm{Me})\}(\mathrm{PPh})_{2}\left(\mathrm{Y}-\mathrm{C}_{5} \mathrm{H}_{5}\right)(\mathrm{B})$
(i) With HCl . Refluxing of a mixture of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\right.$ -$\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(500 \mathrm{mg}, 0.60 \mathrm{mmol})$ and $\mathrm{HCl}(4 \mathrm{ml}$ of I M solution) in McOH (25 ml) for 23 h afforded an orange precipitate which was colleted. washed

Table 5
Crystal data and refinement detaik for 11, 12a and 5

	11	12 a	5
Formula	(, $\mathrm{H}_{3 \times} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Ru}$	$\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{6} \mathrm{PR}_{4}$	
Molut.	7119.?	5996	717
Crustal system	momoctinic	mictume	menochmes
Space group	r_{2}	Fl	Pa, m
	(son)	(6) Ne2)	14, 41414
a. A	$9 \mathrm{ax}(\mathrm{s})$	10.4077	140554
i), A	(7) 565 (10)	$11.221(6)$	8, 74 4 4
c. A	10, 3568	132309\%	21606
a deg	91	92679	40
β, deg	(10) 7893	110.560	116.293
7. deg	40	166.215	9
Vol, A	164	137	203
7	2	2	4
$D_{1} . \mathrm{g} \mathrm{cm}^{3}$	1.455	1.452	1.472
$F(000)$	723	6.00	1.164
$\mu . \mathrm{cm}^{-1}$	574	6.30	$5+1$
θ limits, deg	1.3.21	1.5.23	15938
No. of data collected	7350	2017	50.98
No. of unique data	2194	20.48	420
No. of unique data used			
with $/ \geq 250(l)$	2107	2520	2724
R	0.06	0.055	0.042
k	6.8. 6	7.95	\cdots
β	0.0012	00003	4.0432
R_{u}	0.085	0.068	1,34
$\rho_{\text {max }}$, CA^{3}	1.	12	16,

(methanol), dried and identified (IR, NMR) as $\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ (330 mg , 76\%).
(ii) With dihydrogen. A solution of $\mathrm{Ru}\left\{(E)-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}$ -$\left(\mathrm{PPh}_{3}\right)_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(300 \mathrm{mg}, 0.36 \mathrm{mmol})$ in thf $(20 \mathrm{ml})$ was hydrogenated in an

Table 6
Non-hydrogen atom coordinates for $\mathrm{Ru}\left\{\mathrm{C}_{\left(\mathrm{CO}_{2} \mathrm{Me}\right)}=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}(\mathrm{dppe})\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right) \cdot 0.5 \mathrm{EtOH}$ (11) (Ru $\times 10^{5}$, others $\times 10^{4}$)

Atom	x	y	z
$\mathrm{Ru}(1)$	10824(10)	25000(-)	8502(9)
$\mathrm{P}(1)$	3119(4)	3115(3)	506(4)
P(2)	2225(4)	1421(2)	414(3)
C(2)	3822(8)	3936(5)	2894(8)
C(3)	4681(8)	4442(5)	3774 (8)
C(4)	6034(8)	4684(5)	3550(8)
C(5)	6530(8)	4421(5)	2445(8)
C(6)	5671(8)	3916(5)	1565(8)
C(1)	4318(8)	3673(5)	1789(8)
C(8)	2527(9)	3650(5)	$-2117(8)$
C(9)	2227(9)	4214(5)	-3094(8)
$\mathrm{C}(10)$	2206(9)	4988(5)	- 2744(8)
$\mathrm{C}(11)$	2484(9)	5198(5)	-1416(8)
C(12)	2784(9)	4635(5)	-439(8)
C(7)	2805(9)	3861(5)	-789(8)
C(14)	1691(9)	- 171(5)	3196(8)
C(15)	2727(9)	-736(5)	3075 (8)
C(16)	3618(9)	-645(5)	2163 (8)
$\mathrm{C}(17)$	3492(9)	12(5)	1373(8)
C(18)	2465(9)	576(5)	1495(8)
$\mathrm{C}(13)$	1565(9)	485(5)	2406(8)
$\mathrm{C}(20)$	1606(9)	1246(5)	-2337(8)
$\mathrm{C}(21)$	852(9)	942(5)	-3531(8)
C(22)	-190(9)	366(5)	- 3536(8)
C(23)	-477(9)	94(5)	-2348(8)
C(24)	277(9)	397(5)	-1154(8)
C(19)	1319(9)	973(5)	-1149(8)
C(25)	4124(15)	1620(10)	184(14)
C(26)	4320(12)	2430(11)	-124(12)
C(27)	-1285(9)	2440(5)	955(8)
C(28)	-919(9)	3233(5)	938(8)
C(29)	-493(9)	3390(5)	- 275(8)
$\mathrm{C}(30)$	-595(9)	2695(5)	- 1008(8)
C(31)	-1084(9)	2108(5)	-248(8)
C(32)	1885(14)	2393(12)	2859(11)
C(33)	3289(17)	2091(11)	3474(14)
C(34)	3898(18)	2097(12)	4957(16)
C(35)	889(17)	2694(10)	3673(14)
C(36)	-981(21)	2551(18)	4735(19)
C(37)	$5861(21)$	1801(17)	6642(21)
$\mathrm{O}(1)$	-44(13)	2133(11)	3919(11)
O(2)	886(15)	3357(9)	3977(11)
$\mathrm{O}(3)$	5162(12)	1837(10)	5226(11)
$\mathrm{O}(4)$	3171(15)	2279(11)	5751(13)

autoclave（ $14 \mathrm{~atm}, 100^{\circ} \mathrm{C}, 3 \mathrm{~h}$ ）．Addition of methanol and concentration afforded a white precipitate of $\mathrm{RuH}_{3}\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(62 \mathrm{mg}, 40 \mathrm{~F})$（19）．IR（Nujol： $\boldsymbol{p}(\mathrm{Ru} \cdot \mathrm{H})$ 2040 and $2000 \mathrm{~cm}^{1}$（Lit．［13］ 2040 and $1995 \mathrm{~cm}^{1}$ ）． $1 /$ NMR：$\delta\left(C_{0} D_{1}\right)-100 . \mathrm{d}$.
 $J(\mathrm{HP}) 18 \mathrm{~Hz} ; 4.8$ ，： $70-78 \mathrm{~m}$ ．remectively）

Crystallography

Intensity data for 5,11 （as its ethanol solvate）and $\mathbf{1 2 a}$ were measured at room temperature on an Enraf Nonius CAD4F diffractometer ftted with Mo－K．，gra－ phite monochromatized）radtation $\lambda 0.71073 \mathrm{~A}$ ．with the use of the w：29 scan

Table 7
 $\times 10^{\circ}$ ．others $\times 10^{2}$ ）

Atom	x	1	\therefore
Ru（l）	$30683(5)$	18624	230549
$\mathrm{P}(1)$	4059（1）	3563111	149）${ }^{2}$
Cl 1	6814（5）	4797	1的为
（12）	22975	28850	
（13）	$8984(5)$	$4168(3)$	244，59
（14）	$8185(5)$	5mbt3	\ama
（15）	67056	450003	20785
（16）	601765	3277（3）	1984 ${ }^{5}$
（17）	364544	36136	96\％
（18）	3054（4）	548731	¢84
（19）	22294	886631	1584 ${ }^{5}$
（110）	1985（4）	52123	万的号
C（11）	2579（4）	42393	¢8，
（12）	$3401(4)$	394043	S⿵mas
C（13）	452531	26993	＋rat
（114）	41374	3973	15644
（15）	28136	14．40）	2马64
（116）	18986	5539	－16802
（17）	229763	11953	－ 6 64 5
（18）	361603	$\cdots 1183$	41.4
（19）	3494（12）	$\cdots{ }^{-74} 4$	14764
（20）	$4327(12)$	． 39416	261： 6
（21）	$3344(12)$	－67．60	9610
（22）	1916012）	-10326	13448）
（123）	$2011(12)$	9716：	1为高
（124）	14837	15545	
（125）	3957 l	208093	8896
（126）	$5572(7)$	3477	4367
（127）	$7668(8)$	4347 （\％）	$40 \times 8)$
（28）	338477	$2 \mathrm{x9} 6 \mathrm{6}$	
（129）	1×48 ）	\｛815］	4495 \％
（130）	$124(8)$	195769	al996
O（1）	454（5）	984965	1518
O（2）	6，373（n）	190363	48578
（3）	$6092(4)$	28124	49364
O（4）	$86.5(6)$	100160：	3768
O（5）	102503）	2976	3）${ }^{4} 4$

technique. No significant decomposition of any of the crystals occurred during their respective data collections. Routine corrections were made for Lorentz and polarization effects [15] and for absorption. Relevant crystal data are summarized in Table 5.

Table 8
Non-hydrogen atom coordinates for $\overline{\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)(\eta-1 .) ~(\eta)}$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)(5)\left(\mathrm{Ru} \times 10^{5}\right.$, others $\left.\times 10^{4}\right)$

Atom	x	y	z
Ru	47059(3)	8679(5)	20579(2)
P	5993(1)	188(2)	2638(1)
$\mathrm{O}(1)$	4560(3)	234(6)	3774(2)
O(2)	5622(2)	1669(5)	4201(2)
O(3)	4076(4)	5752(6)	2786(3)
$\mathrm{O}(4)$	4414(3)	4245(6)	3733(3)
O(5)	3056(3)	3491(7)	1423(3)
$\mathrm{O}(6)$	3741(2)	5120(5)	1122(2)
$\mathrm{O}(7)$	4440(3)	3127(6)	568(3)
$\mathrm{O}(8)$	5709(3)	3392(6)	1177(3)
C(1)	3733(4)	408(9)	1025(4)
C(2)	3497(4)	155(8)	1568(4)
C(3)	3928(4)	- 1092(8)	1987(4)
C(4)	4420(4)	-1570(8)	1714(4)
C(5)	4308(4)	-- 672(9)	1106(4)
C(6)	4805(3)	1843(7)	2987(3)
C(7)	4551(3)	3288(7)	2761(3)
C(8)	4419(4)	3319(7)	1996(3)
C(9)	5059(3)	3142(7)	1858(3)
C(10)	4959(4)	1171(8)	3685(3)
C(11)	5832(5)	1027(10)	4899(3)
C(12)	4342(4)	4526(9)	3090(4)
C(13)	4121(7)	5454(13)	4016(6)
$\mathrm{C}(14)$	3659(4)	3945(7)	1488(3)
C(15)	3046(4)	5779(9)	598(4)
C(16)	5001(4)	3220(7)	1122(4)
C(17)	5770(5)	3332(11)	519(5)
$\mathrm{C}(18)$	6711(2)	1716(4)	2921(2)
C(19)	6679(2)	2842(4)	3380(2)
C(20)	7210(2)	4033(4)	3608(2)
C(21)	7774(2)	4097(4)	3376(2)
C(22)	7807(2)	2971(4)	2918(2)
C(23)	7275(2)	1780(4)	2690(2)
C(24)	5783(2)	1967(5)	3528(2)
C(25)	6015(2)	-2885(5)	4132(2)
C(26)	6761(2)	-2804(5)	4657(2)
C (27)	7275(2)	-1805(5)	4579(2)
C(28)	7043(2)	- 887(5)	3975(2)
C(29)	6297(2)	-968(5)	3450(2)
C(30)	6578(3)	-2515(5)	2290(2)
$\mathrm{C}(31)$	6757(3)	-3410(5)	1835(2)
$\mathrm{C}(32)$	6623(3)	-2841(5)	1170(2)
C(33)	6309(3)	-1377(5)	961(2)
C(34)	6131(3)	-482(5)	1417(2)
C(35)	6265(3)	-1051(5)	2082(2)

Table 9
Selected bond distances and angles

Bond distances (A)		Bond angles (deg)	
(a) $\left.\mathrm{Ru}_{(1 \mathrm{E})} \mathbf{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}($ dppe $)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(11)$			
Ru(1) C(27)	$2.2401)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{P}(2)$	83.111
Ru(1)-C(28)	2.2841	$\mathrm{P}(1) \mathrm{Ru}(1) \mathrm{Cl} 32)$	93.344
$\mathrm{Ru}(1) \mathrm{Cl} 29)$	2.2841	$\mathrm{P}(2) \cdots \mathrm{Ru}(1) \ldots \mathrm{C}(32)$	92.29
$\mathrm{Ru}(1)-\mathrm{C}(30)$	2.2411		
Ru(1) C(31)	2.2111	$\mathrm{Ru}(1) \mathrm{P}(1) \mathrm{Cl} \mathrm{Cl}^{(1)}$	122883
Ru(1)-C(cp) (av.)	2.25	$\mathrm{Ru}(1) \mathrm{P}(1) \cdot \mathrm{Cl})$	115.5 (2)
		Ru(1)-P(1)-C(26)	$109.8(6)$
$\mathrm{Ru}(1)-\mathrm{P}(1)$	2.2714	Ku(1)-P(2)-C(18)	1234
$\mathrm{Ru}(1)-\mathrm{P}(2)$	$2.249(4)$	$\mathrm{R} 4(1) \ldots \mathrm{P}(2) \ldots(19)$	112203
		Ru(1) P(2)-(125)	11186
$\mathrm{Ru}(1)-\mathrm{C}(32)$	2.0741		
		$\mathrm{Ru}(1)-\mathrm{CO} 3)-\mathrm{C}(33)$	1261:
$P(1)-C(1)$	1.83611	Ru(1)-C(32)-C(35)	11411
$\mathrm{P}(1)-\mathrm{C}(7)$	1.859		
$P(1)-C(26)$	1.84(1)	C(33)-C(32) C(35)	12011
$P(2)-C(18)$	$1.83(1)$	(132)-C(33)-C(24)	12411
$\mathrm{P}(2)-\mathrm{C}(19)$	1.84 11		
$P(2)-C(25)$	1.87, 17		
($(32)-(133)$	1.4361		
C(32)-C(35)	1.472)		
C(33)-C(34)	1.5321		
(b) $\left.\mathrm{Ru}_{4}(\mathrm{Z})-\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)-\mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right\}\right\}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)(12 \mathrm{a})$			
$\mathrm{Ru}(1)-\mathrm{C}(19)$	2.256 (3)	$P(1)-\mathrm{Ru}(1)-\mathrm{C}(24)$	$85.0(2)$
$\mathrm{Ru}(1) \mathrm{C}(20)$	$2.250(7)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(25)$	$44.7(2)$
$\mathrm{Ru}(1) \cdots \mathrm{C}(21)$	$2.2556)$	C(24) - Ru(1)-C(25)	95.1431
Ru(1)-C(22)	$2.2637)$		
Ru(1)-C(23)	2.264 (\%)	Ru(1) - P(1) (6)	119.82
Ru(1)-C(cp) (av.)	2.258	Ru(1)-P(1)-C(12)	$11.92)$
		Ru(1)-P(1) C(18)	11384)
$\mathrm{Ru}(1)-\mathrm{Cl}(24)$	1.847(7)		
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.310(2)$	$\mathrm{Ru}(1)-\mathrm{C}(24) \mathrm{O}(1)$	1746(7)
Ru(1)-C(25)	$2080(8)$	Ru(1)-C(25) C(20)	114.761
		Ru(1)-6(25) C(28)	13328
$P(1)-C(6)$	$1.822(4)$		
$P(1)-C(12)$	$1.837(4)$	$C(26)-C(25)-C(28)$	11.50
$\mathrm{P}(1) \cdots \mathrm{C}(18)$	1.829, 5)	(125) (128)-C(29)	124.69
O(1) C(24)	1.151(8)		
C(25)-C(26)	1.49(i)		
C(25)-C(28)	1.37013		
(128)-C(29)	1.46(1)		
(c) $\mathrm{Ru}\left\{\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right)=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Me}\right) \mathrm{C}\left(\mathrm{CO} \mathrm{Me}^{\left.(1) \mathrm{CH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)\right\}\left(\mathrm{PPh}_{3}\right)\left(\eta \mathrm{C}_{5} \mathrm{H}_{5}\right)(5)}\right.\right.$			
$\mathrm{Ru}(1)-\mathrm{C}(1)$	$2.207(6)$	P(1)-Ru(1) C(6)	$88.92)$
$\mathrm{Ru}(1)-\mathrm{Cl} 2)$	$2.219(6)$	$\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{C}(8)$	117.72)
$\mathrm{Ru}(1)-\mathrm{C}(3)$	2.247(\%)	$P(1)-\operatorname{Ru}(1)-\mathrm{C}(9)$	$88.112)$
$\mathrm{Ru}(1)-\mathrm{C}(4)$	2.2259	$\mathrm{C}(6)-\mathrm{Ru} 1) \mathrm{C}(8)$	64.60
$\mathrm{Ru}(1)-\mathrm{C}(5)$	$2.2437)$	(10)-Ru(1) (9)	84.712
$\mathrm{Ru}(1)-\mathrm{Cl}(\mathrm{cp})(\mathrm{av})$	2.228		
		$\mathrm{Ru}(1) \mathrm{P}(1)-\mathrm{C}(18)$	119011)
$\mathrm{Ru}(1)-\mathrm{P}(1)$	$2.346(2)$	Ru(1)-P(1)-C(29)	117019
		Ru(1)-P(1)-C(35)	11152)

Table 9 (continued)

Bond distances (\AA)		Bond angles (deg)	
$\mathrm{Ru}(1)-\mathrm{C}(6)$	$2.060(6)$		
$\mathrm{Ru}(1)-\mathrm{C}(7)$	$2.663(6)$	$\mathrm{Ru}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	$100.4(4)$
$\mathrm{Ru}(1)-\mathrm{C}(8)$	$2.189(6)$	$\mathrm{Ru}(1)-\mathrm{C}(6)-\mathrm{C}(10)$	$132.2(5)$
$\mathrm{Ru}(1)-\mathrm{C}(9)$	$2.194(6)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$104.7(5)$
$\mathrm{P}(1)-\mathrm{C}(18)$	$1.833(4)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(12)$	$131.6(6)$
$\mathrm{P}(1)-\mathrm{C}(29)$	$1.839(4)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$117.7(6)$
$\mathrm{P}(1)-\mathrm{C}(35)$	$1.835(4)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(14)$	$114.4(6)$
$\mathrm{C}(6)-\mathrm{C}(7)$		$122.3(6)$	
$\mathrm{C}(6)-\mathrm{C}(10)$	$1.36(1)$		
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.48(1)$		
$\mathrm{C}(7) \mathrm{C}(12)$	$1.52(1)$		
$\mathrm{C}(8)-\mathrm{C}(9)$	$1.43(1)$		
$\mathrm{C}(8)-\mathrm{C}(14)$	$1.42(1)$		
$\mathrm{C}(9)-\mathrm{C}(16)$	$1.50(1)$		

The structures were solved by normal heavy-atom methods and each refined by a full-matrix least-squares procedure based on F [15]. Phenyl atoms were refined as hexagonal rigid groups with individual isotropic thermal parameters in all three structures, in 11 and 12a the cp rings were refined as pentagonal rigid groups, and the remaining non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the models at their calculated positions. A weighting scheme, $w=k /\left[\sigma^{2}(F)+g F^{2}\right]$, was included for each model and the refinements continued until convergence. Final refinement details are listed in Table 5.

The absolute configuration of $\mathbf{1 1}$ could not be determined as there were no significant differences in the Friedel pairs included in the data set.

Scattering factors for neutral Ru (corrected for f^{\prime} and $f^{\prime \prime}$) were from ref. 16 and values for the remaining atoms were those incorporated in SHELX [15].

Fractional atomic coordinates for non-hydrogen atoms are listed in Tables 6-8 and the numbering schemes used are shown in Fig. 1-3. Selected interatomic bond distances and angles are given in Table 9. Full lists of thermal parameters, hydrogen atom parameters, bond lengths and angles, and of the observed and calculated structure factors are available on request from the authors.

Acknowledgements

Financial support for this work through the Australian Research Grants Scheme is gratefully acknowledged. MGH and GAK hold Commonwealth Post-Graduate Research Awards.

References

[^3]5 T. Yasuda, Y. Kai. N. Yasuoka and N. Kasai, Bull. Chem. Soc. Jpn. 50 (1977) 2888
6. N.C. Rice and J.D. Oliver, J. Organomet. Chem., 145 (1978) 121.

7 P.R. Holland, B. Howard and R.J. Mawby, J. Chem. Soc, Dalton Trans., (1983) 231
8 H.C. Clark, G. Ferguson, A.B. Goel. E.G. Janzen, H. Ruegger. P.Y. Sew and C.S. Wong. J. Am. Chem. Soc., 108 (1986) 6961.
9 F. Canziani, A. Albinati. L. Garlaschelli and M.C. Malatesta. J. Organomet. Chem.. 146 , 1978) 147
10 (.A. Tolman, Chem. Rev., 77 (1977) 313.
11 T. Blackmore, M.I. Bruce, F. O.A Stone, R.E. Davis and A. Garza, Chen. Commun.. (1971) 852.
12 L.E. Smart. J. Chem. Soc., Daton Trans.. (1976) 390.
13 S.G. Davies, S.D. Moon and S.I Simpson, J. Chem. Soc., Chem. Commun. (1983) 1278.
14 M.I. Bruce, M.G. Humphrey, A.G. Swincer and R.C. Wallis, Aust. J. Chem. 27 (1984) 1747.
15 Programmes used included: ABSORB and SUSCAD. Data reduction programs for CAD4 Diffractometer, J.M. Guss. University of Sydney, 1976; PRFABS and PROCLS Data reduction programs for CAD4 diffractometer. University of Melbourne. 1981; SHELX. Programme for cristal structure determination, G. M. Sheldrick, University of Cambridge, 1976; PLUTO. Poting program for molecular structures. W.D.S. Motherwell. University of Cambridge. (1978).
16 J.A. Ibers and W.C. Hamilton (Has.). International Tables for Xray Crastallography. Kyoch Press. Birmingham. 1974, Vol. 4. p. 99.149
17 M.I. Bruce, M.G. Humphrey, M.R. Snow and F.R.T. Tiekink. J. Organome: Chem. $314(1986) 213$

[^0]: * In this paper as and trans refer to the comfiguration of the two Cla Me promps

[^1]: ${ }^{a} J(\mathrm{HP})(\mathrm{Hz})$ in parentheses.

[^2]: "Average of two values.

[^3]: 1 T. Blackmore, M.I. Bruce and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1974) 106.
 2 M. Dubeck and R.A. Schell, Inorg. Chem., 4 (1963) 1757.
 3 M.I. Bruce, R.C.F. Gardner and F.G.A. Stone, J. Chem. Soc., Dalton Trans., (1979) 906.
 4 A.W. Johnson and J.C. Tebby, J. Chem. Soc., (1961) 2126.

